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Abstract -- With millions of live thoughts being tweeted on a           
daily basis, how could such a large amount of text data be            
analyzed and researched? By creating a thesaurus which        
contains a set of collected list of words that can be used to             
index and search such large data sets. One important step          
for analyzing such data is to perform pre-processing, which         
is used to clean up the noise, or irrelevant data, from large            
data sets. This is accomplished by []. For this study,          
thousands of cyber security related tweets were pulled using         
the Python programming language for the purpose of        
creating a cyber security thesaurus. The pulled data was         
analyzed, correlated, and processed for relevant words. As a         
result, a thesaurus of cyber security concepts from twitter         
data was created.  
 
  
Index terms -- Tokenization, Stop Words, Lemmatization,       
Cyber Security, Classification, Twitter 
  

I. INTRODUCTION 
  

Analytics based on Twitter data has gained       
relevance over the past few years, largely due to the social           
media platform allowing a wide variety of users to         
quickly send out short messages, or tweets. This allows         
users to quickly jot down and share their thoughts, ideas,          
and even news stories they hear. This ease of         
communication may explain why there are millions of        
users, and amongst those users, are cybersecurity       
professionals and enthusiasts who are constantly posting       
cybersecurity related tweets, such as breaking news of the         
latest zero-day or malicious code found from an        
independent research. These users’ tweets can be       
analyzed for research purposes, such as creating a        
cybersecurity based thesaurus.  

As the field of cybersecurity offers a wide range         
of topics, specific Twitter accounts can be narrowed down         
based on their relevance to the subject. Due to the nature           
of our research resulting in a large variety of the words,           
such narrowing process will be needed in order to remove          
irrelevant words. This process will be later discussed.  

Twitter benefits this particular research because      
many of the terms in the field of cybersecurity are fluid.           
Terms and definitions are frequently changing, making it        

difficult to narrow down exactly what we are looking for.          
One way to resolve this issue is to create algorithms that           
find related terms based on Twitter data. This allows us to           
create a data set that can be easily updated and will stay            
relevant even as the terms themselves change. 

The aim of this study is to build a thesaurus of           
cybersecurity concepts based on Twitter data. This will be         
done by analyzing tweets to generate such a thesaurus,         
including both synonyms and related words. The final        
results will produce a searchable CSV file that will         
contain a number of relevant words and their compatible         
findings. 

The results of this data will provide future        
researchers a comprehensive and reliable cybersecurity      
thesaurus. This will be significant in fields of text         
analytics that may focus on cybersecurity. For example,        
terms can be grouped together based on synonyms, which         
can then be used to track the prevalence of certain ideas or            
terms over time. Continuing research on Twitter will reap         
more benefits as this data will already be built on a           
dataset that they know is relevant. 

II. LITERATURE REVIEW 
  

Previous research has been conducted on the       
creation of a thesaurus based on text corpora through         
machine learning. One particular research comes from       
Ionian University, where semantic thesaurus was created.       
The first approach to building this thesaurus was        
preprocessing the data, which is an important step when a          
analyzing such data. Other important steps include       
tokenization, basic morphological tagging, removal of      
stop words, and removal of data that is exclusive to tweets           
but may not actually be relevant.  

Data in the real world is often incomplete,        
inconsistent, and/or lacking in certain behaviours or       
trends, and is likely to contain many errors. Data         
preprocessing is a proven method of resolving such        
issues. There are several data preprocessing techniques       
such as data cleaning, data integration and data reduction.         
Data cleaning removes noise and correct inconsistencies       
in data. Data integration merges data from multiple        
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sources into a coherent data store such as a data          
warehouse. Data reduction reduces data size by, for        
instance, aggregating, eliminating redundant features, or      
clustering. [13]. 
 Kermanidis, author of the research from Ionian       
University, goes on to describe the process of building a          
semantic thesaurus. Ontologies are defined as hierarchical       
structures of domain concepts that are enriched with        
semantic relations linking the concepts together.  
 

In another study that consisted of sentiment       
analysis where different models were of data collection        
was used to compared on Twitter data. Such models         
included Unigram, and Feature Tree. While the study        
found that the Feature Tree models outperformed       
Unigram, it was the way the data was collected that was           
interesting. The process began with the collection of        
manually annotated Twitter data that was then used to         
experiment against a random sample of streaming data.        
The advantage of this approach was that tweets were         
collected in a streaming fashion that represented a true         
sample of actual tweets of language and content. Such         
twitter data included the use of emoticons that were         
collected for this study. A manual annotated dictionary of         
emoticons was then created, where the emoticons were        
then mapped to their polarity. An acronym dictionary that         
consisted of English translations of over 5,000 frequently        
used acronyms was downloaded and used. 11,875       
manually annotated Twitter data (tweets) were collected       
from a commercial source that archived real-time       
streaming data. Though there was no restriction of        
language or location, Google translator was used to        
convert the tweets to English prior to the annotation. Each          
tweet was then labeled as positive, negative, neutral or         
junk, with junk meaning the tweet could not be         
understood by the annotator or was not properly        
translated. After eliminating the “junk” tweets, the data        
sample was reduced to 8,753 tweets [10]. 
 An emoticon dictionary was prepared by labeling       
170 emotions from Wikipedia with their emotional state.        
Then each emoticon was labeled with extremely positive,        
positive, neutral, negative and extremely negative. An       
acronym dictionary was also used, where acronyms such        
as “lol” were translated to “laughing out loud”. Each         
tweet was then pre-processed by various rules such as         
replacing all the emoticons with their sentiment polarity        
via the dictionary, replacing all URLs and Twitter targets,         
such as @John, with tags, such as ||U||. Slang such as           
“cooool” was changed to “cool”. The purpose of this         
slight alteration was so the researcher can determine the         
term is slang but still be able to analyze it and conduct            
Boolean searches. Statics of different subjects of the data         
such as number of stop words, English words, Twitter         
tags and so on were also taken [10]. 

In another study, two preprocessing methods      
were used to utilize formal concept analysis that were         
then presented. One method extended the set of attributes         
that described objects input data table by the new         
attributes. The second of replaces said attributes with new         
attributes. Both methods include the new attributes as        
being defined by certain formal concepts that were        
computed from an input data table. Selected formal        
concepts were obtained by boolean factor analysis       
described by Formal Concept Analysis (FCA), which is a         
method often used for data preprocessing before the data         
is processed by another data machine learning method. A         
decision tree was also used, which is the most common          
method in data mining and machine learning. It can take a           
finite number of values and assign a class label, often          
depicted by a table [13]. 

 
III. DEFINITION OF A THESAURUS 
 
When most users think of the word thesaurus, a         

word list of synonyms is the first concept that comes in           
mind. But in fact, the words found in a thesaurus are not            
always synonyms of an original word. A thesaurus can be          
used to provide words that are connected with other words          
where the same idea might be most effectively expressed         
by a different word. This was the mindset when such          
statement was kept in mind when such that was based on           
Twitter data was created. 

The most popular approach to creating a       
thesaurus is the “Top-Down” approach, where the actual        
phrases that appear in text are used as a key to organizing            
such material. The index and thesaurus are built out from          
the text, but are not added on. Due to this approach, not all             
the words are properly represented. For instance,       
concepts, which are dependent on description, are named        
and placed within the thesaurus as part of its maintenance          
[10]. 
 The “Bottom-up” approach, on the other hand,       
allows one to build an ACP thesaurus by allowing every          
identifiable phrase that occurs, and is identified in the text,          
to be tracked. The historical information about each        
phrase allows automated methods to reduce the amount of         
human effort involved in such indexing efforts. This        
approach demonstrates a semi-automatic method of      
building a thesaurus from phrases occurring in text [10]. 
 The American College of Physicians attempted      
to produce an index of their medical publications from a          
“Bottom-Up” approach, where nominal phrases were      
extracted from the text of a material with a long word list,            
using data from Unified Medical language Systems       
(UMLS) Metathesaurus along with current lexical and       
linguistic processing tools is feasible. Nominal phrases       
were then normalized to match the UMLS Metathesaurus        
and combined to create concept classifications. Nominal       
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phrases that did not match the Metathesaurus were treated         
as uncategorized terms, and were later reviewed and        
merged into existing or newly created concept classes. All         
of the concepts were then grouped together in larger         
descriptor classes, which provided the basis for the index.         
These descriptor classes and the hierarchical arrangements       
in which the concepts occurred in the UMLS served as the           
basis of the ACP thesaurus [10].  
  

IV.  DATA MINING TOOLS AND TECHNIQUES 
  

Data mining involves utilizing different     
techniques to discover patterns from a large datasets. One         
of the related areas in data mining is text mining, which is            
the process of discovering high quality information from        
text documents. High quality is a term that refers to some           
combination of relevance, novelty and interestingness.      
Text documents contain data from both structured and        
unstructured data. Structured data is data that resides in a          
fixed field within a record or file. This data can be found            
in databases and spreadsheets, while unstructured data is        
the opposite of structure data. Semi-structured data is the         
data that is neither raw nor typed in a conventional          
database system. 

Text mining tries to solve the issues that occur in          
the areas of data mining, machine learning processing,        
information retrieval, knowledge management, and     
classification. It is a technique that extracts information        
from both structured and unstructured data and finds        
patterns. Some applications of text mining include       
information retrieval, information extraction,    
categorization, and natural language processing [15]. 
 Information extraction is a method that identifies       
keywords and relationship within text. This is useful when         
dealing with large volumes of data because predefined        
sequences are being searched. Relations between people,       
identified places and time are inferred to give the user          
meaningful information, as opposed to traditional data,       
where data mining assumes that the data that is being          
mined for is already in the form of a relational database           
[15]. 
 Categorization identifies the main themes of a       
document by inserting the document into a predefined set         
of topics. The document is treated as a bag of words,           
where categorization counts words as they appear from        
the bag and identifies the main topic of the document,          
rather than processing the actual information, as compared        
to information extraction. In short, categorization relies on        
a glossary for predefined topics, and relationships are        
identified by looking for synonyms, narrower, related, and        
large terms [15]. 
 The first step in text mining is data cleaning.         
Data cleaning is the process through which we remove         
unwanted words and characters from our text corpus. This         

step is important because the nature of tweets imbues         
much irrelevant data in each post. This process includes         
extraction, tokenization, stop-word removal and     
lemmatization [13][15]. 
 

VI.  METHODOLOGY 
 

1. Data Set 
 

In order to begin work on the thesaurus, data 
from Twitter was needed to be collected into one easily 
accessible file. Although the Twitter Application 
Programming Interface (API) could have been used to 
automatically pull relevant tweets at runtime, it was 
determined that this process would have taken too long to 
be performed during each run. Additionally, as a major 
part of this research was processing the text, a stable 
corpus was required to ensure that the processing was 
correct. With a permanently downloaded file, this is 
much easier as the results of each attempt can be directly 
compared.  

The first step in this process began with the 
identification of relevant Twitter users. The word 
‘malware’ was entered into the Twitter search engine, 
which allowed us to view related tweets and Twitter 
accounts, to select, or “follow”, the desired Twitter 
accounts for this research.  Accounts that were selected 
for this research had to be dedicated to cybersecurity and 
were up to date on the latest cybersecurity news and 
research. This ensured that the data collected were from 
those that were passionate and knowledgeable on the 
topic. A total of 20 relevant accounts were used for this 
research. 

After finding the appropriate Twitter accounts, a 
python library called Tweepy was used to download user 
tweets into a CSV file. After this process was completed, 
the CSVs were then manually combined into one final 
file with over 42,000 tweets.  

 
2. Data Pre-Processing 

 
Once the corpus was assembled, the data       

preprocessing was ready to begin. As mentioned earlier, it         
is necessary to remove irrelevant for all text analytics         
research. When it comes to Twitter data, however, the         
need is even greater due to the various symbols, unicode,          
and other characters used. For example, the syntax used         
for Twitter replies, “@,” for example, must be        
automatically removed in addition to the user referenced. 

Python was the preferred language for this       
research due to its multitude of data libraries available,         
such as Pandas and the Natural Language Toolkit        
(NLTK). Such libraries are ideal for this type of work,          
[14] as the act of removing stop words can be very           
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tedious. To remove the stopwords, NLTK contains a        
module that has a list of stopwords stored in 16 different           
languages; English was chosen for this scenario [5]. 

Stop words are words that include prepositions       
and pronouns that do not give meaning to a document,          
such as “the, in, a, an, with” and so on. Because           
stopwords can take up to 40-50% of the raw data, they are            
often removed from documents as they're not measured as         
keywords in text mining applications. This also reduces        
the dimensionality of term space. While there are different         
ways to measure stopwords, one common way the        
classical method, where the removal is based on a         
pre-compiled list [14],[16]. 

  
Once Pandas and NLTK libraries were utilized,       

links, numbers, Twitter usernames, “rt”, “via” and “&”        
were removed. Web links that were automatically       
obfuscated by the Twitter API were also removed.        
Unicode characters also were stripped from the tweets in         
addition to numbers and single letters. Removing unicode        
in particular is an important step as Python does not          
correctly support emoji or special characters. This was        
done by the built-in method in NLTK that directly         
removes all non-HTML entities  from the tweets. 

The final step of data preprocessing was       
lemmatization. This process intelligently removed many      
common word suffixes and combined words within       
context. For instance, words with similar meanings, such        
as “well,” “best,” and “better,” can all be lemmatized to          
simply “good.” This kept meaning simple and allowed for         
our next step of calculating word frequencies. This        
process is crucial for our research as it helps to          
concatenate words based on their meaning and remove        
words that may not be exact duplicates, but have identical          
meaning in context [13].  

3. Tokenization 
Once the preprocessing stage was completed, the       

next step was to split the data into individual words so           
that we can perform operations on each words separately.         
This process is known as tokenization and it works by          
separating words using space and punctuation. The       
process of classifying words into their parts of speech and          
labeling them accordingly is known as part-of-speech       
tagging. A part-of-speech tagger processes a sequence of        
words and attaches a part of speech tag to each word in            
the form of a tuple.  

Once the part of speech for the word was         
determined, it was then compared to another list of other          
recognized parts of speeches that were similar to the final          
data set. Nouns and adjectives were heavily focused on.         
As a result, of both data preprocessing and tokenization,         
the final data set was greatly narrowed down and ready to           

be analyzed. 
 

4. Data Analysis 
Once this final list was complete, the frequency        

of words that appeared in the final corpus was reviewed          
and stored with its corresponding word. This held every         
finalized word in the Twitter data along with its frequency          
within the the corpus. This list was then sorted by          
frequency before being printed to the researcher. 

 

Figure 1: Workflow of the research 

 

This step produced a list of a few hundred         
individual words, which could then be manually       
examined by a researcher. By further removing irrelevant        
words, the words most relevant to the original search term          
began to appear. This manual searching was necessary as         
there words that still appeared very frequently, but could         
not be picked up by the original preprocessing steps. For          
example, words such as “via” and “RT,” which are both          
used in the Twitter lexicon to denote retweets, appeared         
frequently in any search performed. This was a common         
occurrence as many users retweet a large number of         
tweets and Twitter does not always enforce a pattern for          
this behavior. Upon finding these sorts of patterns about         
which words appeared most frequently without      
contributing to the research at hand, we were then able to           
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go back and remove them before they were ever attached          
to the final data. 

Determining the number of recurrences of      
certain words will also be an important step in this          
process in order to identify synonyms. One method that         
has been particularly common in previous research is the         
creation of word clouds. This method creates “clouds” of         
words that are sorted by size to illustrate which occur the           
most frequently. In the case of searching for synonyms,         
this step may help when it comes to manually determining          
which words may be relevant for any given entry into the           
thesaurus. Furthermore, these word clouds can also sort        
words based on relevance to other words in the cloud.          
This can act as a logical sorting method for certain entries,           
which can help to narrow down which words may or may           
not end up being relevant for later use [16]. 

For an additional visualization of the final data,        
the word list was fed into a word cloud generator. Word           
clouds take words and their frequencies and plot them         
randomly in an image. The size of each word directly          
correlates to the frequency with which they appear, with         
more frequent words appearing largest and least frequent        
words smallest. This was done to provide the user with a           
visual representation of some of our findings and to make          
this process more understandable from the point of view         
of a lay person. Specifically, by showing a visual         
representation of the frequency, it’s clear how we selected         
our final list of words for the thesaurus.   

 
Figure 2: The word cloud produced for “malware” 

Figure 3: The word cloud produced for “ransomware” 
 

V.  HYPOTHESIS 
  

The primary assumption that our research is built        
on is that this Twitter data will contain enough relevant          
information to build a cybersecurity thesaurus. With this        
considered, it is believed that we can find relevant         
information for almost any term that relates to the field.          
Based on the overwhelming size of the corpus that we are           
analyzing, trends should present themselves based on the        
analysis of word frequencies. 

We believe that analyzing these frequencies is       
especially valuable due to the short form nature of         
Twitter. In 140 characters, it becomes unlikely that a user          
can write more than one or two sentences at a time. This            
means that any Tweet that contains the word we are          
searching for will most likely also contain words related         
to it. For example, if we are searching for the word           
“malware,” it is unlikely that a user’s tweets will deviate          
from that subject greatly. 

This research will be particularly valuable for       
further research in the cybersecurity field. Different forms        
of text analytics and machine learning require primer        
words than can be searched for to discover trends. While          
this type of searching can be straightforward if the subject          
is relatively simple, cybersecurity poses a particularly       
interesting issue in this regard. Since the field is so          
frequently changing, searching for related terms for even        
the most basic topics can be wildly different depending on          
when the searches are carried out. [13] For example, when          
looking for data about recent malware campaigns, using        
the names of malware from even a few months prior can           
be detrimental. In these cases, using words that may be          
completely outdated can severely limit the research that is         
performed. 
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Twitter allows for data that is constantly       
updating and easily flows with the common discourse on         
the subject matter. For example, by searching through        
tweets over time, it can be possible to specifically identify          
which types of malware are most common during any         
given time period. Using real cybersecurity professionals       
as a basis for the data we collected also keeps the final            
product relevant. This allows for further researchers to be         
querying data that is always both relevant to their current          
work and is based upon real world usage. By selecting          
users that are known to be professionals in this subject, we           
can also ensure that the data is not tainted by those who            
are not adding to the common discussion on the subject. 
  

VI.  RESULTS 
  

1.  Initial Results 
 

 Our initial results were based on the word        
“malware.” This word was proven to be an excellent         
starting point and allowed for very focused relevant words         
to be produced. Many words come into light that were          
specifically related to the subject in the exact way we had           
hoped. Specifically, we found a variety of words that were          
related to the subject of malware, such as types of          
malware, antiviruses, words related to hacking, and       
countries that have a reputation of producing some of the          
most popular types of malware. 

Much of this data comes as predicted, and proves         
that this model works correctly in identifying relevant        
words. This also reassured that we selected the right group          
of Twitter accounts to follow for this research. In this          
data, one surprise that came to light was the inclusion of           
the names of countries that have been suspected of         
producing malware [15]. Russia, in particular, appeared       
more than 50 times. This is most likely because of the           
recent ransomware attacks that many believe have       
Russian origins. [11] 
  

malware Android, PCAP, malspam, target, 

bank, hacker, rigged, spam, email, 

campaign, exploit, ransomware, elitist, 

infect, russian, angler, Thesas, 

CCleaner, Cisco, Wannacry, Dridex, 

Kaspersky, Gootkit, government, 

Kronos 

 
Table 1: Sample of the relevant thesaurus entry for the word 

“malware” 

 
 

ransomware Attack, Cerber, Wannacry, 

Petya, Locky, spread, extension, 

malware, Bitcoin, Security, 

Android, campaign, victim, 

target, threat, data, Rigek, 

Update, Ukraine, Wallet, EITest, 

exploit, police, Cryptxxx, 

payment 

 
Table 2: Sample of the relevant thesaurus entry for the word 

“ransomware” 
 

 
2. Further Results 

 
We also tested our program on a number of other          

cybersecurity related terms such as: “ransomware,”      
“encryption,” “DDoS,” “phishing,” “vulnerability,”    
“hacker,” and “backdoor.” Each of these words were        
processed the same way the original “malware,” and our         
program worked without any additional changes needed.       
For these terms, we discovered results that were in line          
with the prior term. The words produced related words         
that could be traced back to specific incidents and phrases          
that made sense in their own context. Furthermore, these         
results also appear to be useful for the same research          
purposes that we are trying to achieve. 

Specifically, when looking at some of the       
individual results, we are able to extract meaning from the          
related words. One of the most interesting results came         
from our analysis of the word “ransomware.” This word         
was specifically chosen due to its relation to the original          
“malware” and because we knew that it would be         
straightforward to confirm the relationship of words in the         
results. We specifically were hoping to see the names of          
some major ransomware attacks in our findings, and were         
pleased to see that six major ransomware attacks were         
spotted in our list of 25 related words.  

 
VII.  CONCLUSION 

 
Overall, we were very pleased with the results        

for all of the tested words. We believe that the trends           
shown from this data prove that it is useful for further           
research and provided accurate thesaurus creation.      
Specifically, the results that showed the names of malware         
attacks prove that this program is particularly accurate and         
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useful.  
When looking at the results produced by       

“ransomware,” the trends shown are assuring for further        
research. As mentioned earlier, the results showing the        
names of ransomware attacks are valuable for research in         
the cybersecurity field. Furthermore, this word also       
showed the results that did not specifically name        
ransomware attacks. The program was able to identify        
words like “Bitcoin,” “wallet,” and “payment.” These are        
clear references to the actual details of the inner workings          
of ransomware attacks, which help to further flesh out the          
type of information a researcher might want to consider         
when looking for this specific term. These results are         
difficult to manually find and would require any        
researcher to spend a considerable amount of time        
learning before they could come to these same sort of          
results on their own. 

In terms of the time relevance of the data, we          
also believe that the program was a clear success. Again,          
citing the ransomware results, we see obvious trends in         
the attacks that were found by the software. All of these           
attacks were performed relatively recently, and show that        
the data can continually be updated as the common         
lexicon of these terms expands. In fact, all a user would           
need to quickly update these terms for the newest results          
would be to download new tweets for Twitter’s API and          
place it in a CSV file for the program. This allows for any             
user of the program to continually update their own data          
with minimal effort. For research that needs to stay up to           
date, we felt that making it as simple as possible to stay            
connected to the real-time conversation was important. In        
this respect, we feel that we were able to succeed.  

Our results for the word “encryption” also       
proved to be interesting and differed greatly from some of          
our other search terms. For this word, many of the results           
did not have any sort of attack or specific point to name.            
Instead, we found that users were mostly concerned with         
the companies and software that they used and their         
implementations of encryption. Words like “iMessage”      
and “WhatsApp” came to the top of the frequency list, as           
these pieces of software are widely considered to be at the           
forefront of the encryption debate for many people.        
Similarly, words like “government” and mentions of       
Great Britain’s version of the NSA were near the top of           
this same list. This helps to illustrate the concern users          
have in regards to encryption and the varying opinions on          
the matter. 

These different type of words, that focus on less         
technical details and instead seemed to be mentioned in         
natural conversations, help to illustrate the flexibility of        
our program. It was clearly able to identify words         
regardless of their meaning and instead found words that         
were truly related to the original search term. This helps to           
show that we would have no issue in the future even if            

further researchers test words that we cannot currently        
predict and may not currently be apart of the cybersecurity          
lexicon.  
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APPENDIX 
 

import pandas as pd 

import operator 

import re 

from nltk.corpus import stopwords 

from nltk import word_tokenize, pos_tag 

from nltk.stem import WordNetLemmatizer 

from nltk.corpus import wordnet 

from nltk.tokenize.casual import _replace_html_entities 

 

import csv 

 

df = pd.read_csv('merged.csv', encoding = "ISO-8859-1")           

#Reading the Twitter Corpus file 

 

df.columns = ["A", "B", "C"] 

 

freqDict = {} 

 

#Start of helper functions.  

 

#Part of speech finder 

pos = lambda tokens: pos_tag(tokens) 

 

#Lemmatizer 

lemmatize = lambda posTokens:       

[processPosTagsAndLemmatize(*wordPos) for wordPos in       

posTokens] 

 

#Returns lemmatization based on PoS 

def processPosTagsAndLemmatize(word, pos): 

return lemma.lemmatize(word,     

treebankToWordnetPOS(pos)) 

 

#Replaces unicode 

def unicodeReplacement(tweet): 

    return _replace_html_entities(tweet) 

 

#Helper function for PoS Tagging 

def treebankToWordnetPOS(treebankPosTag): 

    return {'J': wordnet.ADJ, 

            'V': wordnet.VERB, 

            'N': wordnet.NOUN, 

'R': wordnet.ADV}.get(treebankPosTag[0],     

wordnet.NOUN) 

 

#Declares Lemmatizer 

lemma = WordNetLemmatizer() 

 

#End of helper functions 

 

def dictionary(keyword): 

    wordCount=0 

    for each in df["C"]: 

        if keyword in each.lower(): 

            wordCount = wordCount+1 

            text = each.lower() #Makes each Tweet lowercase  

            text = unicodeReplacement(text) #Removes unicode 

            text = re.sub(r"http\S+", "", text) #Removes links 

            text = re.sub(r'[0-9]+', '', text) #Removes numbers 

text = re.sub(r'@(\w)+', '', text) #Removes Twitter               

usernames 

text = re.sub(r'\W*\b\w{1,3}\b', '', text) #Removes             

single letters 

            text = re.sub(r"rt", "", text) #Removes "rt" 

            text = re.sub(r"via", "", text) #Removes "via" 

            text = re.sub(r"&", "", text) #Removes "&" 

            text = re.sub(r"icymi", "", text) #Removes "ICYMI" 

   

text = ' '.join([word for word in text.split() if word                     

not in stopwords.words("english")]) #Removes stop words 

 

            tokens = word_tokenize(text) #Tokenizes the tweets 

 

            tagged = pos(tokens) #Grabs part of speech 

   

            tagged = lemmatize(tagged) #Lemmatizes 

tagged = pos(tagged) #Grabs part of speech again                 

because it is removed in lemmatization 

 

            for word in tagged: 

if word[1] in       

("NN","NNS","NNP","NNPS","JJ","JJR","JJS"): #Checks if the word         

is a noun or adjective 

if word[0] not in freqDict: #If word is not                   

already in the frequency list, add it 

                        freqDict[word[0]] = 0 

freqDict[word[0]] += 1 #Once word is in the                 

frequency list, increase its frequency  

   

sorted_freqDict = sorted(freqDict.items(),       

key=operator.itemgetter(1)) #Sorts the dictionary by         

frequency 

    sorted_freqDict.reverse() #Reverses the order 

 

print("\nWord Count = " + str(wordCount) + "\n") #Prints                   

total frequency of search word 

    #print(sorted_freqDict) 

   

    for word in sorted_freqDict: 

        print (word) #Prints each word and frequency 

   

   

#The following lines print the dictionary to a CSV file and                       

are optional 

with open('%sWordCloud.csv' %keyword.lstrip(), 'w') as           

csv_file: 

        writer = csv.writer(csv_file) 

        for key, value in sorted_freqDict: 

           writer.writerow([key, value]) 

 

#The lines to run the code 

keyword = input("Enter keyword to be searched: \n") 

dictionary(" " + keyword) 
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