

Generating a Cybersecurity Thesaurus Based On
Tweets

Vincent Fiore, Sukhjinder Nahal, Dmitry Matyunin, Emma Padilla, Jaikishin Satpal, and Andreea Cotoranu

Seidenberg School of CSIS. Pace University, Pleasantville, New York

Abstract -- With millions of live thoughts being tweeted on a
daily basis, how could such a large amount of text data be
analyzed and researched? By creating a thesaurus which
contains a set of collected list of words that can be used to
index and search such large data sets. One important step
for analyzing such data is to perform pre-processing, which
is used to clean up the noise, or irrelevant data, from large
data sets. This is accomplished by []. For this study,
thousands of cyber security related tweets were pulled using
the Python programming language for the purpose of
creating a cyber security thesaurus. The pulled data was
analyzed, correlated, and processed for relevant words. As a
result, a thesaurus of cyber security concepts from twitter
data was created.

Index terms -- Tokenization, Stop Words, Lemmatization,
Cyber Security, Classification, Twitter

I. INTRODUCTION

Analytics based on Twitter data has gained
relevance over the past few years, largely due to the social
media platform allowing a wide variety of users to
quickly send out short messages, or tweets. This allows
users to quickly jot down and share their thoughts, ideas,
and even news stories they hear. This ease of
communication may explain why there are millions of
users, and amongst those users, are cybersecurity
professionals and enthusiasts who are constantly posting
cybersecurity related tweets, such as breaking news of the
latest zero-day or malicious code found from an
independent research. These users’ tweets can be
analyzed for research purposes, such as creating a
cybersecurity based thesaurus.

As the field of cybersecurity offers a wide range
of topics, specific Twitter accounts can be narrowed down
based on their relevance to the subject. Due to the nature
of our research resulting in a large variety of the words,
such narrowing process will be needed in order to remove
irrelevant words. This process will be later discussed.

Twitter benefits this particular research because
many of the terms in the field of cybersecurity are fluid.
Terms and definitions are frequently changing, making it

difficult to narrow down exactly what we are looking for.
One way to resolve this issue is to create algorithms that
find related terms based on Twitter data. This allows us to
create a data set that can be easily updated and will stay
relevant even as the terms themselves change.

The aim of this study is to build a thesaurus of
cybersecurity concepts based on Twitter data. This will be
done by analyzing tweets to generate such a thesaurus,
including both synonyms and related words. The final
results will produce a searchable CSV file that will
contain a number of relevant words and their compatible
findings.

The results of this data will provide future
researchers a comprehensive and reliable cybersecurity
thesaurus. This will be significant in fields of text
analytics that may focus on cybersecurity. For example,
terms can be grouped together based on synonyms, which
can then be used to track the prevalence of certain ideas or
terms over time. Continuing research on Twitter will reap
more benefits as this data will already be built on a
dataset that they know is relevant.

II. LITERATURE REVIEW

Previous research has been conducted on the
creation of a thesaurus based on text corpora through
machine learning. One particular research comes from
Ionian University, where semantic thesaurus was created.
The first approach to building this thesaurus was
preprocessing the data, which is an important step when a
analyzing such data. Other important steps include
tokenization, basic morphological tagging, removal of
stop words, and removal of data that is exclusive to tweets
but may not actually be relevant.

Data in the real world is often incomplete,
inconsistent, and/or lacking in certain behaviours or
trends, and is likely to contain many errors. Data
preprocessing is a proven method of resolving such
issues. There are several data preprocessing techniques
such as data cleaning, data integration and data reduction.
Data cleaning removes noise and correct inconsistencies
in data. Data integration merges data from multiple

1

sources into a coherent data store such as a data
warehouse. Data reduction reduces data size by, for
instance, aggregating, eliminating redundant features, or
clustering. [13].
 Kermanidis, author of the research from Ionian
University, goes on to describe the process of building a
semantic thesaurus. Ontologies are defined as hierarchical
structures of domain concepts that are enriched with
semantic relations linking the concepts together.

In another study that consisted of sentiment
analysis where different models were of data collection
was used to compared on Twitter data. Such models
included Unigram, and Feature Tree. While the study
found that the Feature Tree models outperformed
Unigram, it was the way the data was collected that was
interesting. The process began with the collection of
manually annotated Twitter data that was then used to
experiment against a random sample of streaming data.
The advantage of this approach was that tweets were
collected in a streaming fashion that represented a true
sample of actual tweets of language and content. Such
twitter data included the use of emoticons that were
collected for this study. A manual annotated dictionary of
emoticons was then created, where the emoticons were
then mapped to their polarity. An acronym dictionary that
consisted of English translations of over 5,000 frequently
used acronyms was downloaded and used. 11,875
manually annotated Twitter data (tweets) were collected
from a commercial source that archived real-time
streaming data. Though there was no restriction of
language or location, Google translator was used to
convert the tweets to English prior to the annotation. Each
tweet was then labeled as positive, negative, neutral or
junk, with junk meaning the tweet could not be
understood by the annotator or was not properly
translated. After eliminating the “junk” tweets, the data
sample was reduced to 8,753 tweets [10].
 An emoticon dictionary was prepared by labeling
170 emotions from Wikipedia with their emotional state.
Then each emoticon was labeled with extremely positive,
positive, neutral, negative and extremely negative. An
acronym dictionary was also used, where acronyms such
as “lol” were translated to “laughing out loud”. Each
tweet was then pre-processed by various rules such as
replacing all the emoticons with their sentiment polarity
via the dictionary, replacing all URLs and Twitter targets,
such as @John, with tags, such as ||U||. Slang such as
“cooool” was changed to “cool”. The purpose of this
slight alteration was so the researcher can determine the
term is slang but still be able to analyze it and conduct
Boolean searches. Statics of different subjects of the data
such as number of stop words, English words, Twitter
tags and so on were also taken [10].

In another study, two preprocessing methods
were used to utilize formal concept analysis that were
then presented. One method extended the set of attributes
that described objects input data table by the new
attributes. The second of replaces said attributes with new
attributes. Both methods include the new attributes as
being defined by certain formal concepts that were
computed from an input data table. Selected formal
concepts were obtained by boolean factor analysis
described by Formal Concept Analysis (FCA), which is a
method often used for data preprocessing before the data
is processed by another data machine learning method. A
decision tree was also used, which is the most common
method in data mining and machine learning. It can take a
finite number of values and assign a class label, often
depicted by a table [13].

III. DEFINITION OF A THESAURUS

When most users think of the word thesaurus, a

word list of synonyms is the first concept that comes in
mind. But in fact, the words found in a thesaurus are not
always synonyms of an original word. A thesaurus can be
used to provide words that are connected with other words
where the same idea might be most effectively expressed
by a different word. This was the mindset when such
statement was kept in mind when such that was based on
Twitter data was created.

The most popular approach to creating a
thesaurus is the “Top-Down” approach, where the actual
phrases that appear in text are used as a key to organizing
such material. The index and thesaurus are built out from
the text, but are not added on. Due to this approach, not all
the words are properly represented. For instance,
concepts, which are dependent on description, are named
and placed within the thesaurus as part of its maintenance
[10].
 The “Bottom-up” approach, on the other hand,
allows one to build an ACP thesaurus by allowing every
identifiable phrase that occurs, and is identified in the text,
to be tracked. The historical information about each
phrase allows automated methods to reduce the amount of
human effort involved in such indexing efforts. This
approach demonstrates a semi-automatic method of
building a thesaurus from phrases occurring in text [10].
 The American College of Physicians attempted
to produce an index of their medical publications from a
“Bottom-Up” approach, where nominal phrases were
extracted from the text of a material with a long word list,
using data from Unified Medical language Systems
(UMLS) Metathesaurus along with current lexical and
linguistic processing tools is feasible. Nominal phrases
were then normalized to match the UMLS Metathesaurus
and combined to create concept classifications. Nominal

2

phrases that did not match the Metathesaurus were treated
as uncategorized terms, and were later reviewed and
merged into existing or newly created concept classes. All
of the concepts were then grouped together in larger
descriptor classes, which provided the basis for the index.
These descriptor classes and the hierarchical arrangements
in which the concepts occurred in the UMLS served as the
basis of the ACP thesaurus [10].

IV. DATA MINING TOOLS AND TECHNIQUES

Data mining involves utilizing different
techniques to discover patterns from a large datasets. One
of the related areas in data mining is text mining, which is
the process of discovering high quality information from
text documents. High quality is a term that refers to some
combination of relevance, novelty and interestingness.
Text documents contain data from both structured and
unstructured data. Structured data is data that resides in a
fixed field within a record or file. This data can be found
in databases and spreadsheets, while unstructured data is
the opposite of structure data. Semi-structured data is the
data that is neither raw nor typed in a conventional
database system.

Text mining tries to solve the issues that occur in
the areas of data mining, machine learning processing,
information retrieval, knowledge management, and
classification. It is a technique that extracts information
from both structured and unstructured data and finds
patterns. Some applications of text mining include
information retrieval, information extraction,
categorization, and natural language processing [15].
 Information extraction is a method that identifies
keywords and relationship within text. This is useful when
dealing with large volumes of data because predefined
sequences are being searched. Relations between people,
identified places and time are inferred to give the user
meaningful information, as opposed to traditional data,
where data mining assumes that the data that is being
mined for is already in the form of a relational database
[15].
 Categorization identifies the main themes of a
document by inserting the document into a predefined set
of topics. The document is treated as a bag of words,
where categorization counts words as they appear from
the bag and identifies the main topic of the document,
rather than processing the actual information, as compared
to information extraction. In short, categorization relies on
a glossary for predefined topics, and relationships are
identified by looking for synonyms, narrower, related, and
large terms [15].
 The first step in text mining is data cleaning.
Data cleaning is the process through which we remove
unwanted words and characters from our text corpus. This

step is important because the nature of tweets imbues
much irrelevant data in each post. This process includes
extraction, tokenization, stop-word removal and
lemmatization [13][15].

VI. METHODOLOGY

1. Data Set

In order to begin work on the thesaurus, data
from Twitter was needed to be collected into one easily
accessible file. Although the Twitter Application
Programming Interface (API) could have been used to
automatically pull relevant tweets at runtime, it was
determined that this process would have taken too long to
be performed during each run. Additionally, as a major
part of this research was processing the text, a stable
corpus was required to ensure that the processing was
correct. With a permanently downloaded file, this is
much easier as the results of each attempt can be directly
compared.

The first step in this process began with the
identification of relevant Twitter users. The word
‘malware’ was entered into the Twitter search engine,
which allowed us to view related tweets and Twitter
accounts, to select, or “follow”, the desired Twitter
accounts for this research. Accounts that were selected
for this research had to be dedicated to cybersecurity and
were up to date on the latest cybersecurity news and
research. This ensured that the data collected were from
those that were passionate and knowledgeable on the
topic. A total of 20 relevant accounts were used for this
research.

After finding the appropriate Twitter accounts, a
python library called Tweepy was used to download user
tweets into a CSV file. After this process was completed,
the CSVs were then manually combined into one final
file with over 42,000 tweets.

2. Data Pre-Processing

Once the corpus was assembled, the data

preprocessing was ready to begin. As mentioned earlier, it
is necessary to remove irrelevant for all text analytics
research. When it comes to Twitter data, however, the
need is even greater due to the various symbols, unicode,
and other characters used. For example, the syntax used
for Twitter replies, “@,” for example, must be
automatically removed in addition to the user referenced.

Python was the preferred language for this
research due to its multitude of data libraries available,
such as Pandas and the Natural Language Toolkit
(NLTK). Such libraries are ideal for this type of work,
[14] as the act of removing stop words can be very

3

tedious. To remove the stopwords, NLTK contains a
module that has a list of stopwords stored in 16 different
languages; English was chosen for this scenario [5].

Stop words are words that include prepositions
and pronouns that do not give meaning to a document,
such as “the, in, a, an, with” and so on. Because
stopwords can take up to 40-50% of the raw data, they are
often removed from documents as they're not measured as
keywords in text mining applications. This also reduces
the dimensionality of term space. While there are different
ways to measure stopwords, one common way the
classical method, where the removal is based on a
pre-compiled list [14],[16].

Once Pandas and NLTK libraries were utilized,

links, numbers, Twitter usernames, “rt”, “via” and “&”
were removed. Web links that were automatically
obfuscated by the Twitter API were also removed.
Unicode characters also were stripped from the tweets in
addition to numbers and single letters. Removing unicode
in particular is an important step as Python does not
correctly support emoji or special characters. This was
done by the built-in method in NLTK that directly
removes all non-HTML entities from the tweets.

The final step of data preprocessing was
lemmatization. This process intelligently removed many
common word suffixes and combined words within
context. For instance, words with similar meanings, such
as “well,” “best,” and “better,” can all be lemmatized to
simply “good.” This kept meaning simple and allowed for
our next step of calculating word frequencies. This
process is crucial for our research as it helps to
concatenate words based on their meaning and remove
words that may not be exact duplicates, but have identical
meaning in context [13].

3. Tokenization
Once the preprocessing stage was completed, the

next step was to split the data into individual words so
that we can perform operations on each words separately.
This process is known as tokenization and it works by
separating words using space and punctuation. The
process of classifying words into their parts of speech and
labeling them accordingly is known as part-of-speech
tagging. A part-of-speech tagger processes a sequence of
words and attaches a part of speech tag to each word in
the form of a tuple.

Once the part of speech for the word was
determined, it was then compared to another list of other
recognized parts of speeches that were similar to the final
data set. Nouns and adjectives were heavily focused on.
As a result, of both data preprocessing and tokenization,
the final data set was greatly narrowed down and ready to

be analyzed.

4. Data Analysis
Once this final list was complete, the frequency

of words that appeared in the final corpus was reviewed
and stored with its corresponding word. This held every
finalized word in the Twitter data along with its frequency
within the the corpus. This list was then sorted by
frequency before being printed to the researcher.

Figure 1: Workflow of the research

This step produced a list of a few hundred
individual words, which could then be manually
examined by a researcher. By further removing irrelevant
words, the words most relevant to the original search term
began to appear. This manual searching was necessary as
there words that still appeared very frequently, but could
not be picked up by the original preprocessing steps. For
example, words such as “via” and “RT,” which are both
used in the Twitter lexicon to denote retweets, appeared
frequently in any search performed. This was a common
occurrence as many users retweet a large number of
tweets and Twitter does not always enforce a pattern for
this behavior. Upon finding these sorts of patterns about
which words appeared most frequently without
contributing to the research at hand, we were then able to

4

go back and remove them before they were ever attached
to the final data.

Determining the number of recurrences of
certain words will also be an important step in this
process in order to identify synonyms. One method that
has been particularly common in previous research is the
creation of word clouds. This method creates “clouds” of
words that are sorted by size to illustrate which occur the
most frequently. In the case of searching for synonyms,
this step may help when it comes to manually determining
which words may be relevant for any given entry into the
thesaurus. Furthermore, these word clouds can also sort
words based on relevance to other words in the cloud.
This can act as a logical sorting method for certain entries,
which can help to narrow down which words may or may
not end up being relevant for later use [16].

For an additional visualization of the final data,
the word list was fed into a word cloud generator. Word
clouds take words and their frequencies and plot them
randomly in an image. The size of each word directly
correlates to the frequency with which they appear, with
more frequent words appearing largest and least frequent
words smallest. This was done to provide the user with a
visual representation of some of our findings and to make
this process more understandable from the point of view
of a lay person. Specifically, by showing a visual
representation of the frequency, it’s clear how we selected
our final list of words for the thesaurus.

Figure 2: The word cloud produced for “malware”

Figure 3: The word cloud produced for “ransomware”

V. HYPOTHESIS

The primary assumption that our research is built
on is that this Twitter data will contain enough relevant
information to build a cybersecurity thesaurus. With this
considered, it is believed that we can find relevant
information for almost any term that relates to the field.
Based on the overwhelming size of the corpus that we are
analyzing, trends should present themselves based on the
analysis of word frequencies.

We believe that analyzing these frequencies is
especially valuable due to the short form nature of
Twitter. In 140 characters, it becomes unlikely that a user
can write more than one or two sentences at a time. This
means that any Tweet that contains the word we are
searching for will most likely also contain words related
to it. For example, if we are searching for the word
“malware,” it is unlikely that a user’s tweets will deviate
from that subject greatly.

This research will be particularly valuable for
further research in the cybersecurity field. Different forms
of text analytics and machine learning require primer
words than can be searched for to discover trends. While
this type of searching can be straightforward if the subject
is relatively simple, cybersecurity poses a particularly
interesting issue in this regard. Since the field is so
frequently changing, searching for related terms for even
the most basic topics can be wildly different depending on
when the searches are carried out. [13] For example, when
looking for data about recent malware campaigns, using
the names of malware from even a few months prior can
be detrimental. In these cases, using words that may be
completely outdated can severely limit the research that is
performed.

5

Twitter allows for data that is constantly
updating and easily flows with the common discourse on
the subject matter. For example, by searching through
tweets over time, it can be possible to specifically identify
which types of malware are most common during any
given time period. Using real cybersecurity professionals
as a basis for the data we collected also keeps the final
product relevant. This allows for further researchers to be
querying data that is always both relevant to their current
work and is based upon real world usage. By selecting
users that are known to be professionals in this subject, we
can also ensure that the data is not tainted by those who
are not adding to the common discussion on the subject.

VI. RESULTS

1. Initial Results

 Our initial results were based on the word
“malware.” This word was proven to be an excellent
starting point and allowed for very focused relevant words
to be produced. Many words come into light that were
specifically related to the subject in the exact way we had
hoped. Specifically, we found a variety of words that were
related to the subject of malware, such as types of
malware, antiviruses, words related to hacking, and
countries that have a reputation of producing some of the
most popular types of malware.

Much of this data comes as predicted, and proves
that this model works correctly in identifying relevant
words. This also reassured that we selected the right group
of Twitter accounts to follow for this research. In this
data, one surprise that came to light was the inclusion of
the names of countries that have been suspected of
producing malware [15]. Russia, in particular, appeared
more than 50 times. This is most likely because of the
recent ransomware attacks that many believe have
Russian origins. [11]

malware Android, PCAP, malspam, target,

bank, hacker, rigged, spam, email,

campaign, exploit, ransomware, elitist,

infect, russian, angler, Thesas,

CCleaner, Cisco, Wannacry, Dridex,

Kaspersky, Gootkit, government,

Kronos

Table 1: Sample of the relevant thesaurus entry for the word

“malware”

ransomware Attack, Cerber, Wannacry,

Petya, Locky, spread, extension,

malware, Bitcoin, Security,

Android, campaign, victim,

target, threat, data, Rigek,

Update, Ukraine, Wallet, EITest,

exploit, police, Cryptxxx,

payment

Table 2: Sample of the relevant thesaurus entry for the word

“ransomware”

2. Further Results

We also tested our program on a number of other

cybersecurity related terms such as: “ransomware,”
“encryption,” “DDoS,” “phishing,” “vulnerability,”
“hacker,” and “backdoor.” Each of these words were
processed the same way the original “malware,” and our
program worked without any additional changes needed.
For these terms, we discovered results that were in line
with the prior term. The words produced related words
that could be traced back to specific incidents and phrases
that made sense in their own context. Furthermore, these
results also appear to be useful for the same research
purposes that we are trying to achieve.

Specifically, when looking at some of the
individual results, we are able to extract meaning from the
related words. One of the most interesting results came
from our analysis of the word “ransomware.” This word
was specifically chosen due to its relation to the original
“malware” and because we knew that it would be
straightforward to confirm the relationship of words in the
results. We specifically were hoping to see the names of
some major ransomware attacks in our findings, and were
pleased to see that six major ransomware attacks were
spotted in our list of 25 related words.

VII. CONCLUSION

Overall, we were very pleased with the results

for all of the tested words. We believe that the trends
shown from this data prove that it is useful for further
research and provided accurate thesaurus creation.
Specifically, the results that showed the names of malware
attacks prove that this program is particularly accurate and

6

useful.
When looking at the results produced by

“ransomware,” the trends shown are assuring for further
research. As mentioned earlier, the results showing the
names of ransomware attacks are valuable for research in
the cybersecurity field. Furthermore, this word also
showed the results that did not specifically name
ransomware attacks. The program was able to identify
words like “Bitcoin,” “wallet,” and “payment.” These are
clear references to the actual details of the inner workings
of ransomware attacks, which help to further flesh out the
type of information a researcher might want to consider
when looking for this specific term. These results are
difficult to manually find and would require any
researcher to spend a considerable amount of time
learning before they could come to these same sort of
results on their own.

In terms of the time relevance of the data, we
also believe that the program was a clear success. Again,
citing the ransomware results, we see obvious trends in
the attacks that were found by the software. All of these
attacks were performed relatively recently, and show that
the data can continually be updated as the common
lexicon of these terms expands. In fact, all a user would
need to quickly update these terms for the newest results
would be to download new tweets for Twitter’s API and
place it in a CSV file for the program. This allows for any
user of the program to continually update their own data
with minimal effort. For research that needs to stay up to
date, we felt that making it as simple as possible to stay
connected to the real-time conversation was important. In
this respect, we feel that we were able to succeed.

Our results for the word “encryption” also
proved to be interesting and differed greatly from some of
our other search terms. For this word, many of the results
did not have any sort of attack or specific point to name.
Instead, we found that users were mostly concerned with
the companies and software that they used and their
implementations of encryption. Words like “iMessage”
and “WhatsApp” came to the top of the frequency list, as
these pieces of software are widely considered to be at the
forefront of the encryption debate for many people.
Similarly, words like “government” and mentions of
Great Britain’s version of the NSA were near the top of
this same list. This helps to illustrate the concern users
have in regards to encryption and the varying opinions on
the matter.

These different type of words, that focus on less
technical details and instead seemed to be mentioned in
natural conversations, help to illustrate the flexibility of
our program. It was clearly able to identify words
regardless of their meaning and instead found words that
were truly related to the original search term. This helps to
show that we would have no issue in the future even if

further researchers test words that we cannot currently
predict and may not currently be apart of the cybersecurity
lexicon.

REFERENCES

[1] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Pasonneau,

"Sentiment analysis of Twitter data,” Columbia University,
June. 2011.

[2] A. Ali, “Ransomware: A Research and a Personal Case Study of
Dealing with this Nasty Malware,” Issues in Informing
Science and Information Technology Education, 14, 87-99,
Mar. 2017.

[3] V. Balakrishnan, E.L. Yemoh, “Stemming and Lemmatization: A
Comparison of Retrieval Performances,” Lecture Notes on
Software Engineering, Aug. 2017.

[4] V.P. Baradadi, A. Mugabuskaka “Corpus Specific Stop Words to
Improve the Textual Analysis in Scientometrics,” European
Research Council Executive Agency, Jun. 2015.

[5] S. Bird and E. Loper, “NLTK: The natural language toolkit,”
Proc. of 42nd Annual Meeting of the Association for
Computational Linguistics, 2004.

[6] K.L. Kermanidis, “Learning to Build a Semantic Thesaurus from
Free Text Corpora without External Help,” Intech, pp.
145-186, Jan 2009

[7] W. McKinney, ‘Python for Data Analysis’, Sebastopol: O’Reilly,
 2014.

[8] A Mollett, D.M., Patrick Dunleavy, “Using Twitter in university
research; Teaching and impact activities,” pp. 1-11, 2011.

[9] S. Moon, H. Park, C. Lee, and H. Kwak, "What is Twitter, a
Social Network or a News Media?", pp. 1-10, 2010.

[10] S.J Nelson, T.Khum, D. Radzinski “Creating a Thesaurus from
Text: A Bottom Up Approach to Organizing Medical
Knowledge,” The American College of Physicians, Jun 1998

[11] D. O’Brien, “ISTR Ransomware 2017,” Internet Security Threat
 Report, Jul. 2017.
[12] J. Outrata, "Preprocessing input data for machine learning by

FCA,” Palacky University, Oct. 2010
[13] J. Plisson, Nada Lavrac, and Dunja Mladenic. "A Rule based

Approach to Word Lemmatization," Proceedings of the 7th
International multi-conference Information Society
IS-2004, Ljubljana: Institut "Jožef Stefan", pp. 83-86,
2004.

[14] A. Schofield, Mans Magnusson, David Mimno “Pulling Out the
Stops: Rethinking Stopword Removal for Topic Models,”
Proceedings of EACL, 2017.

 [15] S. Vijayarani, M.Nithya, J. Ilamath “Preprocessing Techniques for
Text Mining - An Overview,” International Journal of
Computer Science & Communication Networks, Feb 2015

 [16] Y. Wu, T. Provan, F. Wei, S. Liu and K. Ma,
“Semantic-Preserving

Word Clouds by Seam Carving,” IEEE Symposium on
Visualization vol. 3, June 2011.

7

APPENDIX

import pandas as pd

import operator

import re

from nltk.corpus import stopwords

from nltk import word_tokenize, pos_tag

from nltk.stem import WordNetLemmatizer

from nltk.corpus import wordnet

from nltk.tokenize.casual import _replace_html_entities

import csv

df = pd.read_csv('merged.csv', encoding = "ISO-8859-1")

#Reading the Twitter Corpus file

df.columns = ["A", "B", "C"]

freqDict = {}

#Start of helper functions.

#Part of speech finder

pos = lambda tokens: pos_tag(tokens)

#Lemmatizer

lemmatize = lambda posTokens:

[processPosTagsAndLemmatize(*wordPos) for wordPos in

posTokens]

#Returns lemmatization based on PoS

def processPosTagsAndLemmatize(word, pos):

return lemma.lemmatize(word,

treebankToWordnetPOS(pos))

#Replaces unicode

def unicodeReplacement(tweet):

 return _replace_html_entities(tweet)

#Helper function for PoS Tagging

def treebankToWordnetPOS(treebankPosTag):

 return {'J': wordnet.ADJ,

 'V': wordnet.VERB,

 'N': wordnet.NOUN,

'R': wordnet.ADV}.get(treebankPosTag[0],

wordnet.NOUN)

#Declares Lemmatizer

lemma = WordNetLemmatizer()

#End of helper functions

def dictionary(keyword):

 wordCount=0

 for each in df["C"]:

 if keyword in each.lower():

 wordCount = wordCount+1

 text = each.lower() #Makes each Tweet lowercase

 text = unicodeReplacement(text) #Removes unicode

 text = re.sub(r"http\S+", "", text) #Removes links

 text = re.sub(r'[0-9]+', '', text) #Removes numbers

text = re.sub(r'@(\w)+', '', text) #Removes Twitter

usernames

text = re.sub(r'\W*\b\w{1,3}\b', '', text) #Removes

single letters

 text = re.sub(r"rt", "", text) #Removes "rt"

 text = re.sub(r"via", "", text) #Removes "via"

 text = re.sub(r"&", "", text) #Removes "&"

 text = re.sub(r"icymi", "", text) #Removes "ICYMI"

text = ' '.join([word for word in text.split() if word

not in stopwords.words("english")]) #Removes stop words

 tokens = word_tokenize(text) #Tokenizes the tweets

 tagged = pos(tokens) #Grabs part of speech

 tagged = lemmatize(tagged) #Lemmatizes

tagged = pos(tagged) #Grabs part of speech again

because it is removed in lemmatization

 for word in tagged:

if word[1] in

("NN","NNS","NNP","NNPS","JJ","JJR","JJS"): #Checks if the word

is a noun or adjective

if word[0] not in freqDict: #If word is not

already in the frequency list, add it

 freqDict[word[0]] = 0

freqDict[word[0]] += 1 #Once word is in the

frequency list, increase its frequency

sorted_freqDict = sorted(freqDict.items(),

key=operator.itemgetter(1)) #Sorts the dictionary by

frequency

 sorted_freqDict.reverse() #Reverses the order

print("\nWord Count = " + str(wordCount) + "\n") #Prints

total frequency of search word

 #print(sorted_freqDict)

 for word in sorted_freqDict:

 print (word) #Prints each word and frequency

#The following lines print the dictionary to a CSV file and

are optional

with open('%sWordCloud.csv' %keyword.lstrip(), 'w') as

csv_file:

 writer = csv.writer(csv_file)

 for key, value in sorted_freqDict:

 writer.writerow([key, value])

#The lines to run the code

keyword = input("Enter keyword to be searched: \n")

dictionary(" " + keyword)

8

